metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Baofeng Zhang, Sheng Chu, Xiaoqing Wang,* Guangqiu Shen and Ru-Ji Wang

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: xqwang@tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.009 Å R factor = 0.069 wR factor = 0.122 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An adduct of (1,10-phenanthroline)diperchloratobis(pyridine-4-carboxaldehyde oxime- κN^1)copper(II) and pyridine-4-carboxaldehyde oxime

In the structure of $[Cu(ClO_4)_2(PA)_2(\mu-phen)]$ ·PA $[PA = pyridine-4-carboxaldehyde oxime or 4-pyridinealdoxime <math>(C_6H_6N_2O)$ and phen = 1,10-phenanthroline $(C_{12}H_8N_2)]$, the coordination geometry around the Cu^{II} atom may be described as a distorted octahedron. Four N atoms, two from a phen ligand and two from PA ligands, occupy the equatorial positions, while two O atoms from two perchlorate groups occupy the axial positions. The PA molecules which are not involved in the Cu^{II} coordination link the complexes through $O-H \cdots N$ and $O-H \cdots O$ hydrogen bonds, forming layers parallel to the *ac* plane.

Comment

It is well known that the design of complexes of the copper ion with various organic ligands is an interesting field (Richards & Durrant, 2002; Melnik *et al.*, 2000) because of their diversity in coordination chemistry and model applications in biomolecules. As a strong bidentate ligand and a chromophoric group, 1,10-phenanthroline (phen) is involved in many copper complexes (Liu *et al.*, 2002; Chen *et al.*, 2003; Wang *et al.*, 2002; Devi & Zubieta, 2003; Clarke *et al.*, 2003; Guo *et al.*, 2002). 4-Pyridinealdoxime (PA) can be considered as a linear bridging ligand and few complexes of transition metals with PA have been reported (Allan & Paton, 1993). We report here, the structure of a coordination aggregate, (I), constructed by Cu(ClO₄)₂, phen and PA, in which the PA functions as a terminal ligand.

The asymmetric unit of (I) contains a discrete $[Cu(PA)_2(\mu - phen)(ClO_4)_2]$ complex and a PA molecule. A displacement ellipsoid plot of the complex is shown in Fig. 1 and selected bond distances and angles are given in Table 1.. The coordination environment of the central Cu^{II} atom can be described as a distorted octahadron with two N atoms (N1 and N2) from a phen ligand and two N atoms (N3 and N5) from PA ligands occupying the equatorial positions, and two O atoms (O1 and O6) from two perchlorate groups occupying the axial positions. The Cu^{II} atom is displaced from the equatorial plane by

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 11 August 2003 Accepted 22 August 2003 Online 30 August 2003

The structure of (I), showing 35% probability displacement ellipsoids and the atomic numbering scheme. The coordination bonds are shown as open lines and dashed line indicates a longer coordination bond.

0.095 (3) Å, in the direction of O1. The average Cu-N distance of 2.005 (4) Å is comparable to that [2.020 (3) Å]found in $[Cu(phen)_2 py(ClO_4)]^+$ (py = pyridine; Niu *et al.*, 2001). The length of the two axial Cu–O coordination bonds are not equal. The Cu1-O6 bond length [2.960 (5) Å] is considerably longer than Cu1–O1 bond length [2.357 (4) Å]. The shorter Cu–O length is slightly longer than that found between Cu^{II} and the O atom of a water molecule (2.274 Å; Liu *et al.*, 2002). The longer Cu-O distance suggests a very weak bonding. However, it is still shorter than that found in $[Cu(phen)_2 py(ClO_4)]^+$ (Niu *et al.*, 2001). The fact that atoms O1 and O6 have smaller displacement parameters compared to those of the other O atoms of perchlorate groups confirms the interactions between Cu^{II} and perchlorate groups.

The phen ligand is planar and makes a dihedral angle of $4.0 (2)^{\circ}$ with the equatorial plane. The coordinated PA mol-

ecules play a role of terminal ligand instead of the expected linear bridging ligand. However, the PA molecules which are not involved in the Cu^{II} coordination connect the complexes through hydrogen bondings. As can be seen from Fig. 2, the $O-H \cdots N$ and $O-H \cdots O$ hydrogen bonds (Table 2) between the complexes and uncoordinated PA molecules, as well as O-H···O hydrogen bonds between coordinated PA molecules and perchlorate groups, result in the formation of thick layers parallel to the *ac* plane.

Experimental

To a methanol solution (20 ml) of Cu(ClO₄)₂·6H₂O (0.5 mmol) and phen (0.5 mmol), 4-pyridinealdoxime (1.0 mmol) was added. The mixture was stirred for 2 h in air before being left at room temperature for 30 min. The resulting dark-blue solution was filtered and allowed to evaporate at room temperature. After 2 d, blue crystals of the complex suitable for X-ray analysis were obtained. They were collected by suction filtration and air-dried. All chemicals were purchased commercially and used without further purification.

Crystal data

$ \begin{bmatrix} Cu(ClO_4)_2(C_6H_6N_2O)_2 - (C_{12}H_8N_2) \end{bmatrix} \cdot C_6H_6N_2O \\ M_r = 809.03 \\ \text{Triclinic, } P\overline{1} \\ a = 8.2981 (7) \text{ Å} \\ b = 13.525 (2) \text{ Å} \\ c = 16.5280 (13) \text{ Å} \\ \alpha = 104.16 (2)^{\circ} \\ \beta = 90.05 (2)^{\circ} \\ \gamma = 107.34 (2)^{\circ} \\ V = 1711.3 (4) \text{ Å}^3 $	Z = 2 $D_x = 1.570 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3143 reflections $\theta = 2.3-20.4^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 293 (2) K Plate, blue $0.30 \times 0.10 \times 0.08 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999) $T_{min} = 0.726, T_{max} = 0.933$ 7700 measured reflections	5970 independent reflections 3289 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 25.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 16$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.001P)^2]$

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) +$
$R[F^2 > 2\sigma(F^2)] = 0.069$	+ 0.5P]
$wR(F^2) = 0.122$	where $P = (F_{i})$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
5970 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e}$
469 parameters	$\Delta \rho_{\rm min} = -0.33 {\rm e}$
H-atom parameters constrained	

 $^{2} + 2F_{c}^{2})/3$

Table 1

Selected geometric parameters (Å, °).

Cu1-N3	1.986 (5)	Cu1-N5	2.026 (4)
Cu1-N2	1.993 (4)	Cu1-O1	2.357 (4)
Cu1-N1	2.014 (4)	Cu1-O6	2.960 (5)
N3-Cu1-N2	170.4 (2)	N1-Cu1-O1	90.40 (15)
N3-Cu1-N1	91.45 (18)	N5-Cu1-O1	92.76 (17)
N2-Cu1-N1	82.81 (18)	N3-Cu1-O6	93.53 (19)
N3-Cu1-N5	90.61 (17)	N2-Cu1-O6	78.72 (15)
N2-Cu1-N5	94.71 (17)	N1-Cu1-O6	88.83 (14)
N1-Cu1-N5	176.18 (18)	N5-Cu1-O6	87.83 (16)
N3-Cu1-O1	91.59 (18)	O1-Cu1-O6	174.84 (14)
N2-Cu1-O1	96.12 (15)		

Table 2	
Hydrogen-bonding geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O9 - H9B \cdots N7^{i} \\ O10 - H10B \cdots O7^{ii} \end{array}$	0.82 0.82	1.88 2.01	2.660 (7) 2.823 (7)	160 169
$O11-H11A\cdots N6$	0.82	2.05	2.816 (7)	156

Symmetry codes: (i) x - 2, y, z; (ii) 1 - x, 1 - y, 1 - z.

H atoms were placed in geometrical positions and allowed for using a riding model [C-H = 0.93 Å, O-H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(\text{parent C})$ and $1.5U_{eq}(\text{parent N})$].

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the financial support by the National Natural Science Foundation of China (No. 50132010) and the 985 Program of Tsinghua University to this work.

References

- Allan, J. R. & Paton, A. D. (1993). Thermochim. Acta, 228, 71-78.
- Bruker (1997). *SMART* (Version 6.22), *SAINT* (Version 6.22) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, X.-Y., Cheng, P., Liu, X.-W., Yan, S.-P., Bu, W.-M., Liao, D.-Z. & Jiang, Z.-H. (2003). Chem. Lett. 32, 118–119.
- Clarke, R., Latham, K., Rix, C. & White, J. (2003). Acta Cryst. C59, m7-m9.
- Devi, R. N. & Zubieta, J. (2003). Inorg. Chim. Acta, 343, 313–316.
- Guo, J.-F., Fu, L.-S., Zheng, Y.-X., Liu, F.-Y., Meng, Q.-G., Wang, J. & Zhang, H.-J. (2002). Chem. Lett. 31, 998–999.
- Liu, G.-F., Ye, B.-H., Ling, Y.-H. & Chen, X.-M. (2002). Chem. Commun. pp. 1442–1443.
- Melnik, M., Kabesova, M., Koman, M., Macaskova, L. & Holloway, C. E. (2000). J. Coord. Chem. 50, 177–322.
- Niu, D.-Z., Lu, Z.-S., Ma, H.-J. & Sun, B.-W. (2001). Chin. J. Struct. Chem. 20, 207–209.
 - Richards, R. L. & Durrant, M. C. (2002). J. Chem. Res. (S), pp. 95-98.
 - Wang, Y.-Y., Wang, X. & Shi, Q.-Z. (2002). Transition Met. Chem. 27, 481–484.